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ABSTRACT 
We explore the feasibility of muscle-computer interfaces 
(muCIs): an interaction methodology that directly senses 
and decodes human muscular activity rather than relying on 
physical device actuation or user actions that are externally 
visible or audible. As a first step towards realizing the mu-
CI concept, we conducted an experiment to explore the 
potential of exploiting muscular sensing and processing 
technologies for muCIs. We present results demonstrating 
accurate gesture classification with an off-the-shelf elec-
tromyography (EMG) device. Specifically, using 10 sensors 
worn in a narrow band around the upper forearm, we were 
able to differentiate position and pressure of finger presses, 
as well as classify tapping and lifting gestures across all 
five fingers. We conclude with discussion of the implica-
tions of our results for future muCI designs. 

Author Keywords: Electromyography (EMG), Muscle-
Computer Interfaces (muCIs), input, interaction. 

ACM Classification Keywords: H.1.2 [User/Machine Sys-
tems]; H.5.2 [User Interfaces]: Input devices and strategies; 
B.4.2 [Input/Output Devices]: Channels and controllers  

INTRODUCTION 
Many human-computer interaction technologies are cur-
rently mediated by physical transducers such as mice, key-
boards, pens, dials, and touch-sensitive surfaces. While 
these transducers have enabled powerful interaction para-
digms and leverage our human expertise in interacting with 
physical objects, they tether computation to a physical arti-
fact that has to be within reach of the user.  

As computing and displays begin to integrate more seam-
lessly into our environment and are used in situations where 
the user is not always focused on the computing task, it is 
important to consider mechanisms for acquiring human 
input that may not necessarily require direct manipulation 

of a physical implement. For example, drivers attempting to 
query their vehicle navigation systems may find it advanta-
geous to be able to do so without removing their hands 
from the steering wheel, and a person in a meeting may 
want to unobtrusively communicate with someone outside. 
Also, since physical computer input devices have been 
shown to be prone to collecting microbial contamination in 
sterile environments [7], techniques that alleviate the need 
for these implements could be useful in surgical and clean-
room settings. 

To date, most efforts at enabling implement-free interaction 
have focused on speech and computer vision, both of which 
have made significant strides in recent years but remain 
prone to interference from environmental noise and require 
that the user make motions or sounds that can be sensed 
externally and by definition cannot be easily concealed 
from those around them. 

Advances in muscular sensing and processing technologies 
provide us with the unprecedented opportunity to potential-
ly interface directly with human muscle activity. Electro-
myography (EMG), which measures electrical potentials 
generated by muscle cells, is one such technology. Driven 
by the growing societal recognition of the needs of people 
with physical disabilities, researchers are using EMG to 
diagnose muscular diseases, assess progress in muscular 
rehabilitation, and directly control prosthetics [1,8,9,11,18]. 
In these systems, researchers use detailed knowledge of the 
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Figure 1: Artist rendering of a forearm band with EMG sen-
sors that could be used for muscle-computer interfaces. 



 

 

human physiology to apply sensors, measure activity in 
specific muscles, and infer intended or unintended move-
ments from recorded data. 

While this work has been quite successful, we argue that an 
untapped use of muscle-sensing technologies is in decoding 
a rich set of gestures in a relatively unobtrusive manner. 
Specifically, we explore the feasibility of muscle-computer 
interfaces (muCIs) as an interaction methodology that 
enables input by directly sensing and decoding human mus-
cular activity.  

Since muCIs rely on sensing relatively subtle muscle activi-
ty which sometimes leads to little or no perceivable external 
movement, they could enable more subtle and implicit 
forms of human computer interaction than those dependent 
on data streams traditionally sensed or used by humans to 
manipulate our environment or communicate with one 
another. Further, since we envisage that muCI sensors can 
essentially be worn on the body much like a watch or jewe-
lry (see Figure 1), they provide an always-available and 
highly personalized input technology. This level of access 
to a computer input stream will likely be desirable as com-
puting is performed in an increasingly greater variety of 
environments where traditional input devices may not be 
easily accessible. 

As we expect such interfaces to be used largely by healthy 
individuals in real-world settings, work in this space poses 
several unique challenges and opportunities. First, while it 
is normal for medical applications to require time-
consuming expert placement of sensors in order to optimal-
ly isolate muscle activity [2], end-users will not have the 
time, inclination, or expertise to do this. Hence, the equip-
ment must be easy to set up and configure. Ideally, it should 
also be in a form factor that is unobtrusive and perhaps 
even fashionable to wear. Second, while work on current 
applications has been careful to eliminate ‘noise’ such as 
skin movement in measurements, we believe that our target 
environments make this extremely difficult. Fortunately, 
our applications instead allow us to exploit such artifacts as 
useful ‘signal.’ As we will show in this paper, this allows us 
to make more consistent and precise activity inferences than 
those previously reported (e.g., [23]). 

The work presented in this paper is an initial step in explor-
ing how EMG technology can be used as an input modality. 
We contribute an articulation of opportunities within this 
domain, and present an experiment showing that it is indeed 
possible to accurately classify various finger gestures across 
multiple fingers, including lifting and tapping, application 
of three levels of finger pressure, and moving to two posi-
tions using only 10 sensors placed in a band around the 
upper forearm. Note that at present, our intent is not to in-
vestigate classification of all possible gestures or to delve 
into the minutiae surrounding issues involved in building 
real muCI applications. While such efforts are clearly wor-
thy of attention, it makes little sense to embark upon them 
without first understanding the potential and limits of EMG 

sensing in this context. As such, our work is focused on 
providing foundational data demonstrating that using EMG 
for muCIs is feasible. We conclude by discussing the impli-
cation of our results to the designs of future muCIs. 

BACKGROUND AND RELATED WORK 

Sensing Muscles with EMG 
Human skeletal muscles are made up of muscle fibers at-
tached to bone by tendons. These muscles contract to create 
skeletal movement. To contract a muscle, the brain sends an 
electrical signal through the nervous system to motor neu-
rons. These motor neurons then transmit electrical impulses 
known as action potentials to the adjoining muscle fibers, 
causing the muscle fibers to contract. The combination of a 
motor neuron and the attached muscle fibers are known as a 
motor unit. Each muscle is made up of many motor units. 
During muscle contraction, some subset of a muscle’s mo-
tor units is activated. The sum of all the electrical activity in 
a motor unit during contraction is referred to as a motor unit 
action potential (MUAP).  

Electromyography (EMG) measures the MUAP as an elec-
trical potential between a ground electrode and a sensor 
electrode. EMG can measure signals either directly within 
the muscle (invasive EMG) or on the skin above a muscle 
(surface EMG). Invasive EMG is very accurate in sensing 
muscle activation, but is impractical for human-computer 
interaction applications as it requires needle electrodes to be 
inserted through the skin and directly into the muscle fibers. 
Surface EMG, while less accurate, only requires that con-
ductive sensors be placed on the surface of the skin. Surface 
EMG is fundamentally noisier than invasive EMG since 
MUAPs must pass though body tissues such as fat and skin 
before they can be captured by a sensor on the surface. Due 
to the high sensitivity of EMG sensors required to detect 
these signals, they also typically detect other electrical phe-
nomena such as activity from other muscles, skin move-
ment over muscles, and environmental noise. For more in-
formation on the state-of-the-art in surface 
electromyography, see Merletti and Parker [17]. In our 
work, we explore the use of surface EMG for muscle sens-
ing, and imagine people wearing future muscle-computer 
interaction devices as a small strap or band of sensors slid 
on to the upper forearm (see Figure 1). 

The EMG signal is an electrical potential, or voltage, 
changing over time. The raw signal is an oscillating wave 
with an amplitude increase during muscle activation. Most 
of the power of this signal is contained in the frequency 
range of 5 to 250 Hz [17]. A typical statistic computed over 
the raw EMG signal for diagnosis of muscle activity is the 
windowed root mean squared (RMS) amplitude of the 
measured potential. This measure has typically been em-
ployed for diagnostic purposes such as evaluating muscle 
function during rehabilitation after a surgery or for measur-
ing muscle activation to assess gait [13]. RMS amplitude is 
a rough metric for how active a muscle is at a given point in 
time. For a full review of processing techniques used in 
previous work, see Naik et al. [19]. 



EMG for Prosthetics 
For over three decades, researchers have been working on 
using EMG as a means for amputees to use remaining mus-
cles to control prosthetic limbs [9,11]. Most research in this 
domain has focused on using the muscles of the upper arms 
and shoulders to control the gross orientation and grasp of a 
low-degree-of-freedom prosthetic device for manipulating 
objects [9]. Each measured upper arm muscle is typically 
mapped directly to one degree of freedom of the prosthetic. 
For example, tricep contraction could be used for rotation 
while bicep flexion might close or open the prosthetic. 

More recently, researchers have begun to look at the poten-
tial of using the forearm muscles in hand amputees to con-
trol a multi-fingered prosthetic hand. While we know of no 
fully functional hand prosthetic, this is clearly a promising 
new area of EMG research. One of the challenges for creat-
ing hand prosthetics is that there is not a trivial mapping of 
individual muscles to finger movements. Instead, many of 
the same muscles are used for several different fingers [23].  

In tackling these problems, Jiang et al. [10] used wavelet 
transforms combined with a neural network to classify 
thumb, index finger, and middle finger movements from 
several EMG sensors placed on the upper arm and forearm. 
Similar research by Peleg et al. [20] has examined the pos-
sibility of differentiating among individual finger move-
ments. They use auto regression features combined with a 
K-nearest-neighbor classifier to identify which of the five 
fingers is pressing a button. They fastened sensors to users’ 
lower and upper forearms and immobilized their arms by 
attaching them to a board. Both of these techniques require 
sensors in multiple places on the arms (lower forearm, up-
per forearm, and upper arm) and require users to be in a 
fixed posture. Our work deviates from prosthetics research 
in that we deliberately aim for simpler sensor placement in 
a single band formation on the upper forearm, and we also 
try to classify a wider range of finger movements.  

EMG for Human Computer Interaction 
EMG sensing has been explored in HCI research for sens-
ing emotion through facial muscle activity [16]. This work 
utilizes the state of human facial muscles as a mirror for the 
human emotional state. Since the user is not intentionally 
controlling facial muscle activity, this work also showcases 
implicit computer input using EMG. In fact, since EMG is 
sensitive enough to pick up activity that is too small to re-
sult in actual muscle movement, this work demonstrates the 
potential to capture emotional state via EMG even when 
there is no externally visible representation. 

Along similar lines, Constanza et al. [5,6] have investigated 
subtle EMG-based interfaces. Users of their system cycle 
through an auditory voice mail menu on a cell phone by 
flexing one or both biceps. They demonstrate that people 
can use this input method to discretely interact with a de-
vice without being detected by others.  

Wheeler, et al. [24] explored using EMG sensors on the 
forearm to recognize joystick movement and Naik et al. 

[19] built a system that used EMG sensors distributed 
across the forearm to classify wrist, finger, as well as com-
bined wrist and finger flexion. While these systems attain 
relatively good results, we believe that there are opportuni-
ties for extending gesture detection beyond the gross 
movements explored in their work. Also, we believe that 
wrist movements are only suitable in a subset of applica-
tions, and that finger activity will be a more natural me-
chanism for interacting with most computer systems. Other 
researchers have created EMG input devices requiring only 
finger movement in order to explore the space of finer mo-
tor movement [15]. However, this work requires that devic-
es be worn directly on the fingers, which is somewhat intru-
sive and might interfere with normal finger activity. We 
seek to expand on this prior work with new techniques for 
higher-fidelity input via forearm muscles. 

EXPERIMENT 

Goals 
Previous EMG-based input methods have classified gross 
movements such as wrist flexion or bicep activation, and 
hand prosthetics research has placed sensors on the forearm 
to detect finger movements. However, these approaches 
involve a restrictive setup procedure including fixing the 
hand to a board or placing sensors at many places on the 
arm in order to recognize only a few finger movements.  

The high-level goal of our present work is to determine 
whether muCIs are even feasible using EMG technology. 
We seek to employ EMG technology in such a way that 
muscle-computer interaction can be comfortable, unobtru-
sive, and useful for computer input.  

Our approach is to place EMG sensors in a narrow band 
formation on the upper forearm. We envision this eventual-
ly becoming a thin wireless band worn just below the elbow 
(see Figure 1). As a starting point for muCI research, we 
describe four sets of finger gestures and attempt to classify 
them computationally. We compute three simple sets of 
features over an eight-channel EMG signal. These features 
are then used for classification in an unmodified algorithm 
distributed in an academic machine learning toolkit [25]. 

We evaluate the extent to which we can classify gestures in 
this new muCI input space through a laboratory experiment 
in which participants performed these gestures. It is impor-
tant to note that we deliberately chose a simple EMG setup 
and off-the-shelf machine learning techniques in order to 
determine a lower bound on classification accuracy and 
ensure that our techniques are accessible to other research-
ers. If this simple setup results in reasonable classification 
ability, we should only be able to do better with improved 
hardware and more sophisticated classification algorithms. 

Tasks 
Participants performed four distinct sets of finger gestures. 
These sets were created in order to broadly explore how 
well our simple setup and analysis techniques could discri-
minate among various characteristics in finger movements 
that might typically be useful in real interface applications. 



 

 

Specifically, we tested whether we could classify position 
and pressure of finger presses, as well as differentiate 
among all fingers during tapping and lifting (see Figure 2).  

Gesture sets that allow the independent use of all five fin-
gers are particularly interesting in this exploration. Physio-
logically, since not all the fingers have independent muscle 
bundles that run down through the forearm (e.g., control of 
the thumb is mostly done through a strand that runs only to 
the palm and wrist), we expected this to be a very difficult 
classification task, as demonstrated by multiple researchers 
who have tried before us and resorted to using only gross 
movements for control. However, we believe that the ability 
to classify among gestures performed by all five fingers 
independently is powerful in designing muCIs. Of course, 
not all gestures are easily performed independently by all 
fingers, and our choice of which fingers to study for partic-
ular gestures reflects these differences among fingers. 

Each participant began each of the tasks with his hand in a 
relaxed palm-down position on the table, which we refer to 
as the rest position. For most participants, this meant that 
fingers were mostly extended, but slightly curled. We asked 
participants to return to this rest position between gestures. 

Position: Index & Middle Finger 
The four gestures in the Position set involved touching a 
surface with either the index or middle finger in one of two 
positions: extended or curled (Figure 2a). Touching in the 
extended position is characterized as touching the surface 
with a finger while the hand is in the rest position. A curled 
position involves sliding the pad of the finger closer to the 
palm, which also causes the knuckle to rise, and touching 
the surface in that position. Participants were instructed to 
touch the surface firmly but not excessively hard. 

Pressure: Index & Middle Finger 
The four gestures in the Pressure set involved pressing 
lightly or firmly on a surface with either the index or mid-
dle finger (Figure 2b). This was done in the extended posi-
tion (i.e., from rest). We told participants that when “press-
ing lightly”, they should apply enough pressure to dent a 
tomato, while “pressing hard” would break the skin of the 
tomato. Including the rest state, this gesture set has three 
levels of pressure. 

Tap: Each of the Five Fingers 
The five gestures in the Tap set involved individually tap-
ping each of the five fingers on a surface from the rest posi-
tion (Figure 2c). This involved raising the finger slightly 
and then returning it onto the surface. Participants were told 
to do this comfortably and not to exaggerate the gesture. 

Lift: Each of the Five Fingers 
The five gestures in the Lift set involved individually rais-
ing each of the five fingers in the air and holding it there 
(Figure 2d). Participants were told to raise the finger only to 
the point where further movement would require additional 
force, and not to exert any more force than was required to 
life the finger off the table. 

Equipment and Setup 
We used a BioSemi Active Two system for performing 
EMG sensing on participants’ forearms [3]. This device 
employs a two-electrode active grounding system that 
drives the average potential of the participant as close as 
possible to the amplifier ground and reduces noise levels. 
The device samples eight sensor channels (labeled EX1 
through EX8 in Figure 3) at 2048 Hz. While the capability 
of the Active Two to sense EMG is secondary to its primary 
electroencephalograph (EEG) function, the signals from 
this research device are comparable to most mid-end com-
mercial surface EMG units used in medical settings. Sensor 
data was recorded to hard disk via a USB connection. 

Before placing sensors on participants, we had them clean 
their upper forearms with an abrasive skin scrub, which 
helped ensure good conductivity and easy attachment. We 

Figure 3: Sensors placed in a narrow band around a par-
ticipant’s arm. Picture taken from actual experiment. 

Figure 2: Stimuli representing the four sets of finger gestures tested during the experiment.  

(a) Position 

(b) Pressure (d) Lift 

(c) Tap 



then applied conductive gel to each sensor and attached 
them to the participants’ skin with a small adhesive circle 
around the gel. This cleaning procedure and the use of con-
ductive gel are simply artifacts of the particular EMG 
equipment we used. Both can be obviated if dry electrodes, 
available with other manufacturers’ equipment, are used 
instead (e.g., see www.neumed.com). Dry electrodes would 
clearly be more appropriate for actual muCI applications. 

Traditionally, EMG sensors are placed on the muscle belly, 
the largest mass of muscle that powers the particular 
movement of interest, in order to robustly measure the ac-
tion potentials. Pairs of sensors are typically placed about 
an inch (~2.5cm) or so apart, in line with the muscle fibers. 
Most current work also alludes to requiring intimate know-
ledge of surface muscle anatomy in order to get good sensor 
placement and clean signal. 

In our pilot studies, we found that we could get reasonable 
signal even when we only approximately placed the sen-
sors, especially when we had multiple sets of them placed 
around the forearm. Hence we decided to place pairs of the 
eight sensors and the two ground electrodes in a narrow 
ring around each participant’s upper right forearm (see Fig-
ure 3). We evenly spaced each pair around the portion of 
the forearm that did not rest on the table, with the ground 
electrodes in the middle. This configuration has encourag-
ing implications for potential form factors of an approx-
imately-placed armband EMG device (as illustrated in Fig-
ure 1). We draped sensor cables over the tops of 
participants' arms, allowing them to rest their arms com-
fortably on the table. Again, the presence of these cables 
was an artifact of our device, and wireless units are already 
commercially available [12]. On average, setup took a little 
less than 10 minutes. 

Participants found a comfortable sitting position and 
viewed visual stimuli on a 21″ Samsung SyncMaster 214B 
LCD display. While we advised participants to minimize 
extraneous movements, we did not interrupt or stop them 
when they moved. Many participants occasionally stretched 
their hands, rocked their chairs back and forth, or tapped 
their feet. We believe that testing in such an environment is 
important as it mimics the realistic usage conditions of fu-
ture muscle-computer interfaces. 

Design and Procedure 
A within-participant design was used, with each participant 
performing all four tasks: Position, Pressure, Tap, and Lift. 
We counter-balanced the order of tasks across participants 
using a Latin square design. 

A randomized block design was used within each task. 
Each block consisted of a single repetition of each gesture 
within a set, presented in random order. We refer to each 
instance of a performed gesture as a trial. Participants per-
formed multiple consecutive blocks for each task before 
proceeding to the next task. This block design is important 
as it ensures that gestures were relatively well distributed in 

time and that temporal bias (e.g., measurement drift) does 
not artificially inflate classification results. 

For each trial, the participant was presented a visual stimu-
lus that indicated the gesture to be performed (still images 
from Figure 2 presented on a computer screen). Participants 
were told to perform the appropriate gesture for the dura-
tion the stimulus stayed on the screen. In the Position, Pres-
sure, and Lift tasks, stimuli were presented for two seconds. 
Tap stimuli were only shown for three quarters of a second, 
because a tap is a discrete gesture and cannot be “held 
down” or “held up.” Participants were told to only tap their 
finger once per stimulus. A random delay between one and 
two seconds was inserted between stimuli to allow partici-
pants to return their hand to the rest position and refocus 
attention. Before each task, participants were given instruc-
tions and had approximately two minutes to practice per-
forming the gestures with the prompting of the stimuli. 

For each of the Pressure, Lift, and Tap tasks, participants 
completed 50 blocks with a two-minute break after 25 
blocks were completed. Thus, each gesture for each of 
those tasks was performed 50 times by each user. In our 
pilot studies, we found the Position gesture set to be the 
most difficult to classify. Hence, we collected 75 blocks 
instead, resulting in 75 trials for each Position gesture, in 
order to have more training data for classification. 

Participants 
Thirteen individuals (8 female) from the broader communi-
ty volunteered for the experiment. Participants ranged from 
20 to 63 years of age with an average age of 46. Partici-
pants were between 5′1″ and 6′1″ (1.55m to 1.85m) and 
weighed from 125 lbs to over 225 lbs (57kg to over 102kg). 
Most were daily computer users and played video games 
infrequently. None of the participants reported any existing 
muscular conditions or skin allergies, and all were right-
handed. None were colorblind and all had 20/20 or cor-
rected-to-20/20 vision. The experiment took approximately 
90 minutes and participants received a software gratuity. 

One participant remarked several times during and after the 
experiment that he “zoned out” and did not respond to the 
stimulus for sizable stretches of time. As such, we did not 
use this participant’s data, discarding it before we began our 
analysis. In the following sections, we report on analysis of 
the data collected from the remaining twelve participants. 

Data Analysis Techniques 
In order to classify the signals measured with our EMG 
setup, we first perform some basic signal processing to 
transform the time series data into a time-independent data 
set. We then compute a set of features, which we use to 
train a support vector machine (SVM) [4] and perform the 
classification. We discuss two metrics that quantify classifi-
cation quality, one based on the accuracy with individual 
samples, and the other based on classifying entire trials. 
These steps are described in the following subsections. 



 

 

Basic Signal Processing 
We first convert the raw EMG data into a time-independent 
dataset, which is generally better-suited to most machine 
learning algorithms. To do this, we adopt a technique used 
in EEG work [11]: we divide the raw EMG signal into 
250ms segments and treat each 250ms segment as a single 
sample of EMG data. We then apply a band-pass filter to 
each sample between 2 Hz and 102 Hz, as pilot studies in-
dicated that this is where most of the useful signal resides. 
We also filter out the 55 Hz to 65 Hz band in order to re-
move the 60 Hz noise that exists in most computing envi-
ronments (e.g., from power lines and appliances). 

Feature Generation 
For each 250ms sample, we generated three classes of fea-
tures, which we use for training and testing the classifier. 
These classes were chosen based on prior work suggesting 
that they may be discriminative of various activities within 
electroencephalography and EMG signals [14,17,22]. 

• Root Mean Square (RMS) amplitude of the EMG poten-
tial is indicative of the amplitude of muscle activity close 
to a particular sensor. We first fully rectify the signal by 
taking its absolute value and then compute the RMS am-
plitude of each of the 8 channels. From these 8 base RMS 
features, we create another 28 by taking the ratios of the 
base RMS values between each pair of the channels. 
These ratios make the feature space more expressive by 
representing relationships between channels, rather than 
treating each as being completely independent.  

• Frequency Energy is indicative of the firing rate of mus-
cle activity. The energy is often thought to be significant-
ly affected by muscle energy and fatigue [17], and our pi-
lot studies suggest it has high discriminative power in the 
activity space as well. To derive the frequency energy 
feature, we compute the fast Fourier transform (FFT) for 
each sample and square the FFT amplitude, which gives 
the energy at each frequency, and sum the energy of all 
channels into 10 Hz bins. This yields 10 frequency ener-
gy features for each sample.  

• Phase Coherence measures the extent to which the EMG 
channels in a sample have a fixed relationship to each 
other (e.g., firing in similar manner). This is used exten-
sively in electroencephalography work [14] and pilot stu-
dies suggest it has discriminative power for EMG as well. 
As with the RMS values, we create 28 features by taking 
the ratios of the average phase between all channel pairs.  

These calculations result in 74 features per sample in total. 

Classification 
In our pilot studies, we explored several machine learning 
techniques for classifying the EMG signal into gestures. In 
those studies, we found that SVMs seemed to perform well 
[4]. SVMs are a set of supervised machine learning me-
thods, which take a set of labeled training data and create a 
function that can then be used to predict the labels of unla-
belled data. The labeled training data typically consist of 

input vectors of feature values and desired outputs. At a 
high level, SVMs map the input vectors to a high-
dimensional space and attempt to create a set of maximal 
separating hyperplanes between the output variables, or 
classes. For our experiment, we used the Sequential Minim-
al Optimization (SMO) version of support vector machines 
[21] as implemented in the Weka toolkit [25]. SMO is a fast 
method for training SVMs that breaks the typically large 
quadratic programming problem into a series of the smallest 
possible problems which are then solved analytically. This 
optimization minimizes computation time and memory use.  

We used the default parameters for Weka’s implementation 
of the SMO algorithm. Specifically, we set Weka’s com-
plexity parameter to 1.0 and the epsilon for round-off error 
at 1.0E-12, and we used a polynomial kernel function with 
exponent 1 and tolerance parameter of 0.001. 

In labeling the training data we collected, we could have 
used values derived directly from the stimulus presentation 
(i.e., when the stimulus was showing a particular value, the 
data would be labeled accordingly), but we observed that 
participants responded to the stimulus with varying delay. 
Therefore, labeling based on the presented stimuli is more 
accurate toward the end of the stimulus presentation period. 
Hence we discard the first four 250ms samples (a total of 
one second per trial) and use only the next four samples for 
training. To acquire rest samples, we take the single sample 
that immediately preceded each gesture stimulus, as this 
was projected to be the time in which the hand had max-
imally recovered from the previous gesture but had not yet 
begun the next. Doing this also allowed us to have equiva-
lent amounts of data from the rest and active conditions. 
See Figure 4 for an illustration of the data samples used. 
Throughout this paper, our classifiers were trained and 
tested independently on data from each user from a single 
user session (except where stated otherwise). 

Classification Results 
We conducted a ten-fold cross-validation for tabulating 
classification accuracies for all four of our gesture sets. In 
each of the ten folds, 90% of the collected data was used for 
training and 10% was used for testing. The testing data 
were always taken as a single continuous chunk in time, as 
this is the most realistic scenario for testing such applica-
tions. Performing a random holdout set, as is traditionally 

Figure 4: To mitigate variability introduced by participant 
reaction time, we trained and tested using only the sample 

before each stimulus was shown and the last four samples dur-
ing stimulus presentation. 



done, could have artificially boosted our results since test 
data samples would have been temporally adjacent to train-
ing samples. Using the training and testing methodology 
described above, we evaluated our classification accuracies 
for the four gesture sets. 

Single-Sample Classification 
Our first metric is the accuracy of single-sample classifica-
tion. This metric provides a sense of the overall perfor-
mance of the classifier. For the same reasons described 
above with respect to our training data, we only classify the 
sample immediately before each stimulus and the four sam-
ples at the end of the stimulus (see Figure 5). We do not try 
to classify the first four samples within the stimulus presen-
tation period because we do not know when the physical 
gesture actually began due to variance in participant re-
sponse times. The four samples we do classify are treated 
independently of each other. Classifying the sample imme-
diately before stimulus presentation allows us to include the 
non-active or rest state as a condition in our classification. 

In classifying single samples, our Position classifier per-
formed at an average accuracy of 71% (sd: 9.0%) while 
Pressure classified at about 76% (sd: 6.1%). In both cases, 
these results are much higher than the prior probability (the 
expected performance of a random classifier). For both of 
these tasks, prior probability is 20% because the classifiers 
were deciding among five conditions (four gestures and 
rest), each with an equal number of samples.  

The Tap gestures were classified at an accuracy of 75% (sd: 
6.9%) and Lift at 87% (sd: 7.0%). Again, these results are 
significantly above the prior probability, which was 17% 
since they were differentiating among six conditions (five 
gestures and rest). Per-participant accuracies for these re-
sults are shown in Figure 7. 

Whole-Trial Classification 
Our second metric is the accuracy of whole-trial classifica-
tion. In a muCI, we probably care more about classifying an 
entire gesture, or trial, rather than single data samples. As 
such, this metric provides us with a more ecologically valid 
measure of classifier performance. We consider a trial as 
the period starting three samples before stimulus presenta-
tion and ending three samples after (Figure 6). In order to 
classify a trial, we take a majority vote among classifica-
tions of individual samples in the largest non-rest region. 
When there is a tie, the vote that occurred latest wins. 

Accuracy increases for all tasks when we use this more 
ecologically valid whole trial classification metric. With 
this metric, Position gestures are recognized at 78% (sd: 
9.0%), Pressure at 84% (sd: 4.7%), Tap at 78% (sd: 10.5%), 
and Lift at 95% (sd: 6.4%). Figure 8 summarizes this data. 

We note that if the classification problem is simplified by 
removing some of the gestures that are difficult to disambi-
guate, accuracy increases. For example, when all of the 
light pressure trials are removed from the Pressure task da-
ta, and the system only has to differentiate the firm index 
finger press, firm middle finger press, and rest conditions, it 
performs at an accuracy of over 90% (sd: 3.5%). 

Quantity of Training Data and Classification Performance 
In the above evaluations, we used 90% of the data collected 
for training. We believe that it is important to understand 
the time-performance tradeoffs that exist in collecting train-
ing data, which has implications for the time required to 
configure muCI’s in the future. Hence, we analyzed our 
data with various amounts of training data, incrementally 
removing samples from the end of the training data. 

Figure 6: In whole-trial classification, we take a majority vote 
among classifications of individual samples in the largest non-

rest region. 

Figure 5: In single-sample classification, we classify each of the 
data samples independently. 

Figure 7: Single-sample classification accuracies for all four sets of gestures, broken down by participant, with the mean result on 
the right side of the graph.  
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We found, not surprisingly, that decreasing the amount of 
training data decreases the accuracy of the classifier (Figure 
9). However, we were pleasantly surprised at how slowly 
the results degrade as training data is reduced and how ro-
bust they are to the amount of training data available. In 
fact, each classifier’s accuracy decreases only about 20% as 
we reduce the amount of training from 45 blocks to just 7 
blocks. For example, Lift gestures are still classified at al-
most 70% accuracy with only two minutes of training data. 

Discussion 

Noisy Labels 
One of the most significant limitations on our current clas-
sification results was the degree of inaccuracy in our labels 
when we trained and tested the gesture classifier. There 
were two main sources of noise in the labels.  

The first type of noise is introduced by a variance in delay 
between stimulus presentation and participant response. 
This delay created many mislabeled data samples since the 
stimulus presentation could not be assumed to match the 
actual muscular response. While we mitigated the effect of 
this noise by using only the latter samples within a trial, we 
do not think this resulted in entirely correct labels, as va-
riance between participants was quite large, with at least 
one participant who seemed to respond well beyond the 
one-second window of data that we did not classify. 

The second source of noisy labels comes from participant 
error: in some cases, participants performed a different ges-
ture than that instructed by the stimulus. Some participants 

remarked that they would try to anticipate upcoming stimuli 
and would make mistakes when they did not guess correct-
ly. Hence, some percentage of our classification “errors” 
may actually be correct based on the gesture actually per-
formed, but we do not know how frequently this occurred. 

Both these problems could have been alleviated had we 
instrumented the participant or surface with physical 
switches or gesture sensors so we would know exactly 
when a finger pressed down or lifted. We choose not to 
implement such a setup because we wanted participants to 
perform gestures unencumbered and in a manner that was 
comfortable and intuitive for them, to maintain ecological 
validity with respect to our proposed application scenarios. 
While performing a study with such a control remains fu-
ture work, we are encouraged by the surprisingly good re-
sults even in the presence of what we believe are fairly noi-
sy labels, which only hurt our current results. We also 
believe that many of these problems would be minimized in 
an interactive system where users would have feedback 
indicating the system’s classifications of their actions. 

What Are We Measuring? 
While traditional EMG work has been careful to ensure that 
the measured signal is derived from muscle unit action po-
tentials, it is important to recall that these sensors do also 
detect other electrical signals. These signals include firing 
from distant muscles, such as the heart, environmental 
noise, and most importantly gross body movements. Many 
of these body movements cause the skin on which the sen-
sors are attached to move as well, creating electrical signal.  

Figure 8: Whole-trial classification accuracies for all four sets of gestures, broken down by participant, with the mean result on the 
right side of the graph.  
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Figure 9: Decreasing the amount of training data degrades classification accuracy for all four gesture sets, but performance re-
mains surprisingly high even with very little training data. The dotted orange line represents chance.  



While many of these extraneous signals would be consi-
dered too unreliable for use in traditional medical settings, 
we believe that some portion of our measured signals may 
actually be due to some of these “artifacts”, but assert that 
these signals are perfectly legitimate, if not desirable, for 
use in muCIs that aim to classify overall activity. We be-
lieve that this approach of utilizing every bit of available 
signal is one of the reasons we are able to classify indepen-
dent movement of all five fingers with such high accuracy, 
even though not all the fingers have muscle bundles that run 
down the forearm.  

Cross-User Classification to Reduce Training Time 
In the results presented above, classifiers were trained and 
tested independently on data from each user with a fixed-
placement of electrodes. That is, a new classification model 
was created for each user. In this scenario, every user has to 
train the system before it can recognize his or her gestures 
with each placement of electrodes. 

To extend this result, we explored how well we could create 
cross-user models: models that are trained on data from one 
set of users and applied to classification on another. Being 
able to do this has implications for the robustness and inva-
riance of the features we are using, and also for the poten-
tial of creating systems that require little or no user-specific 
training data. As an initial exploration of this problem 
space, we performed a twelve-fold cross validation in 
which we held out data from one user and trained on data 
from the remaining eleven. We attained reasonable though 
not stellar results. For example, we classify Lift gestures at 
an average of 57% accuracy (chance was 17%). It is not 
surprising that this accuracy is lower than for single-user 
models, especially since we did not do anything in sensor 
placement, experimental design, or data analysis to provide 
specifically for cross-user transfer. Despite these limita-
tions, the classifier performed considerably better than 
chance, suggesting that there exists potential for building 
cross-user classifiers in this domain. 

A more sophisticated approach to cross-user modeling 
might involve cross-validating internally within the training 
data to select the most invariant features from which to 
build the classifier. Exploring this remains future work. 

IMPLICATIONS FOR THE DESIGN OF muCIs 
The classification results presented in this paper are based 
on single-handed input. A similar sensor band could be 
placed on the other forearm to provide even more input 
possibilities. Since the classifiers would work nearly inde-
pendently, we expect that this would approximately double 
the gesture space with little or no drop in accuracy. In fact, 
if we consider compound gestures involving both hands, we 
could imagine the input space growing quite significantly. 

We believe the form factor of a wireless band just below 
the elbow is feasible in the near future for muscle-computer 
interfaces. The components for such a system are relatively 
inexpensive and wireless EMG products already exist (e.g., 
[11]). A band could be unobtrusive and worn either openly 

as a fashion accessory, or concealed beneath clothing. In 
either scenario, it would provide an input capability where 
traditional input devices are not feasible or desirable. We 
note that this form factor does not guarantee identical sen-
sor placement as the user removes and replaces the arm-
band; the results presented in this paper assume that sensors 
did not move between training and decoding. Further work 
will be necessary to establish the training paradigms or me-
chanical constraints that will be necessary to generalize to a 
removable form factor. 

The index and middle finger are arguably the most viable 
initial candidates for use in muCI applications that rely on 
position-based and pressure-based gestures, as it is difficult 
to independently control the fourth and fifth fingers for 
such gestures, and the thumb’s abilities in this regard are 
qualitatively quite different from the other fingers. As such, 
our work focused on the index and middle fingers when 
evaluating position and pressure. The promisingly high 
classification accuracies we obtained indicate that simple 
muCIs could be designed that allow for the control of one 
or two input channels using the index and middle fingers. 
Examples include two-position sliders or switches con-
trolled by extending and curling these two fingers, and 
three-state buttons controlled by varying the pressure ex-
erted by these fingers (with button states corresponding to 
the “rest”, “pressing lightly” and “pressing hard” gestures 
we evaluated in our experiment). The beauty of doing this 
with a muCI is that these gestures can be performed any-
where and against any surface, whether a table one happens 
to be sitting at, one’s own lap, or a car’s steering wheel. 

In contrast to position and pressure, simpler gestures such 
as tapping and lifting are reasonably independently per-
formed by all fingers, hence our experiment evaluated all 
five fingers for these two gestures. Tapping and lifting with 
all five fingers are of particular interest, as our results indi-
cate that we could conceivably design a muCI that allowed 
any surface to be turned into a virtual keyboard operable by 
all five fingers (and potentially all ten fingers if a similar 
sensor band was worn on both arms). This has significant 
implications for text input where traditional keyboards may 
not be viable: imagine sitting in a meeting, typing away 
with your fingers drumming on your lap with visual feed-
back obtained through your eye-glass display, while others 
in the room are entirely unaware of your secondary activity. 
In fact, visual feedback might well be provided by a stan-
dard laptop screen: while typing on a laptop’s keyboard 
might be distracting to other meeting attendees, typing via 
your muCI and receiving feedback via a standard laptop 
display would likely not. 

CONCLUSIONS AND FUTURE WORK 
Our techniques and experiment show potential for unobtru-
sively sensing and decoding muscular activity for computer 
input. It is important to note that our results, with classifica-
tion accuracies as high as 95% in some conditions, were 
achieved with off-the-shelf machine learning techniques, 
and with casually placed EMG sensors. It is reasonable to 



 

 

expect that even better classification accuracies could be 
achieved with more highly tuned machine learning algo-
rithms and purpose-built sensors. We note, however that 
our results were obtained with participants in a relatively 
sedentary position and gestures were performed beginning 
from a well-defined rest state. It remains to be investigated 
how classification accuracy degrades in situations where 
the user is less sedentary or where gestures are performed in 
quick succession with possible overlap. 

Our results provide a baseline that we hope will spur further 
research geared towards realizing a fully deployable muCI 
in the near future. Apart from refining the hardware tech-
nology and classification techniques, an interesting next 
step would be to investigate interaction scenarios enabled 
by this style of sensing. Of particular interest is how users 
would perform with muCIs that can be used unobtrusively 
in any locale, but that lack the passive haptic feedback of 
most current physical input technologies. We believe that 
with the right design of interaction techniques coupled with 
appropriate visual and auditory feedback, the impact of not 
having haptic feedback can be successfully mitigated, but 
this hypothesis remains to be formally investigated. 
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